Max. Marks: 70

III B.Tech - I Semester – Supplementary Examinations NOVEMBER 2023

COMPUTER ARCHITECTURE & ORGANIZATION (ELECTRONICS & COMMUNICATION ENGINEERING)

Duration: 3 hours

Code: 20EC4501D

Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries 14 marks and have an internal choice of Questions.

2. All parts of Question must be answered in one place.

			Max.			
			Marks			
	UNIT-I					
1	a)	Explain the concept of register transfer in computer	7 M			
		organization. How is data transferred between registers				
		using register transfer notation?				
	b)	Illustrate the operation of a 4-bit binary adder in	7 M			
		register transfer notation. Provide a step-by-step				
		explanation.				
	OR					
2	a)	Construct a bus system for four registers using	7 M			
		multiplexers. Describe the components and connections				
		involved.				
	b)	Explain logic micro-operations in computer	7 M			
		organization. Provide examples of logic micro-				
		operations and their applications.				
	I		<u> </u>			

		UNIT-II	
3	a)	Explain the significance of instruction codes in a	4 M
		computer's instruction set architecture (ISA).	
	b)	How does a CPU determine the type of instruction	10 M
		during the fetch and decode phase? Outline the	
		examples of different instruction types.	
		OR	
4	a)	Explain the concept of a common bus system in	7 M
		computer organization. How does it enable	
		communication between different registers?	
	b)	What are the key steps in the interrupt cycle? How does	7 M
		the CPU handle interrupts and return to the interrupted	
		program?	
		UNIT-III	
5	a)	Demonstrate the concept of a Register Stack and its role	7 M
		in computer organization. How does it differ from a	
		Memory Stack?	
	b)	List the examples of data manipulation instructions and	7 M
		explain their role in performing arithmetic and logical	
		operations.	
		OR	
6	a)	Define addressing modes in computer architecture.	10 M
		Explain the purpose of addressing modes in instruction	
		execution.	
	b)	Explain conditional branch instructions in computer	4 M
	1	organization.	

		UNIT-IV	
7	a)	Explain the process of addition with signed-magnitude	8 M
		data. Provide an example to illustrate the steps	
		involved.	
	b)	Demonstrate the concept of memory hierarchy in	6 M
		computer systems.	
		OR	
8	a)	Analyze the hardware circuitry used for signed-	4 M
		magnitude subtraction.	
	b)	Explain the concept of address mapping in virtual	10 M
		memory systems. How are virtual addresses translated	
		into physical addresses?	
		UNIT-V	
9	a)	Explain the purpose of an I/O bus and interface	7 M
		modules in connecting peripheral devices to a	
		computer. How do these components facilitate data	
		transfer?	
	b)	Analyze the function of a DMA controller. How does it	7 M
		facilitate DMA transfers between memory and	
		peripheral devices?	
		OR	
10	a)	Demonstrate the priority interrupt handling mechanism	6 M
		in computer systems.	
	b)	Analyze the significance of handshaking in	8 M
		asynchronous data transfer. How does it ensure data	
		integrity during I/O operations?	